THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5510 Foundation of Advanced Mathematics 2017-2018 Assignment 2 (Due date: 26 Oct, 2017)

- 1. Show that the function $f:[0,\infty) \to \mathbb{R}$ defined by $f(x) = x^2$ is injective. Furthermore, is f a surjective function? Why?
- 2. Let A, B and C be sets and let $g: A \to B$ and $f: B \to C$ be bijective functions. Show that $(f \circ g): A \to C$ is also a bijective function.
- 3. (Optional) Intermediate value theorem: Let $f : [a,b] \to \mathbb{R}$ be a continuous function such that f(a) < f(b). If L is a real number such that f(a) < L < f(b), then there exists $c \in (a,b)$ such that f(c) = L

By using intermediate value theorem, show that $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$ is surjective. (You may assume f is a continuous function.)

4. By using the definition of addition of natural numbers, evaluate 2 + 3.

(You may assume the usual notations $1 = 0^+$, $2 = 1^+$, $3 = 2^+$ and etc.)

- 5. Recall the definition of multiplication of natural numbers: Let $m, n \in \mathbb{N}$,
 - $m \times 0 = 0;$
 - $m \times n^+ = m \times n + m$.

Follow the steps below to prove various properties of multiplication of natural numbers.

- (a) $0 \times m = 0$ for all $m \in \mathbb{N}$. (Prove by induction on m)
- (b) (Existence of Identity) $1 \times m = m \times 1 = m$ for all $m \in \mathbb{N}$. (Prove by induction on m)
- (c) $m^+ \times n = m \times n + n$ for all $m, n \in \mathbb{N}$. (Prove by induction on n)
- (d) (Commutative Law of Multiplication) $m \times n = n \times m$ for all $m, n \in \mathbb{N}$. (Prove by induction on m)
- (e) (Distributive Law) $m \times (n+p) = m \times n + m \times p$ for all $m, n, p \in \mathbb{N}$. (Prove by induction on p)
- (f) (Associative Law of Multiplication) $(m \times n) \times p = m \times (n \times p)$ for all $m, n, p \in \mathbb{N}$. (Prove by induction on p)
- 6. Prove that for any natural number n, there is no natural number m such that $n < m < n^+$.
- 7. (a) Let $m, n \in \mathbb{N}$. Prove that m < n if and only if $m^+ < n^+$.
 - (b) Let $m, n, p \in \mathbb{N}$. Prove that m < n if and only if m + p < n + p. (Hint: Using mathematical induction on p.)
- 8. Let $m, n, p \in \mathbb{N}$ and $p \neq 0$. Prove that m < n if and only if mp < np.